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The objective of this paper is to solve the performance output regulation problem for a wave-heat cascade system with unmatched
disturbance. Applying the series expansion, the auxiliary trajectory for the cascade system is constructed and the unmatched
disturbance is rejected. Meanwhile, the controller and observer only based on error signal are designed, and the performance
output regulation problem is solved. Under the control feedback, the performance output can track the reference signal, and the
regulation error goes to zero asymptotically. Finally, some numerical simulations are presented for illustration.

1. Introduction

In recent years, regulating the output of a given distributed
parameter system is one of the central problems in control
theory. The objective of the output regulation is to construct
a controller such that the performance output of the given
plant can track a reference signal. Comparing with the finite-
dimensional system, there exist various so-called noncollo-
cated problems in distributed parameter system. The system
we consider is described by the one-dimensional wave-heat
cascade system as follows:

V̇ (𝑡) = 𝐺V (𝑡) , 𝑡 ≥ 0,
𝑢𝑡𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝑢𝑥 (0, 𝑡) = 𝑐1𝑧 (0, 𝑡) + 𝑐2𝑢 (0, 𝑡) , 𝑡 ≥ 0,
𝑢𝑥 (1, 𝑡) = −𝑐0𝑢𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝑧𝑡 (𝑥, 𝑡) = 𝑧𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝑧𝑥 (0, 𝑡) = 𝑑 (𝑡) , 𝑡 ≥ 0,
𝑧 (1, 𝑡) = 𝑈 (𝑡) , 𝑡 ≥ 0,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ [0, 1] ,
𝑢𝑡 (𝑥, 0) = 𝑢1 (𝑥) , 𝑥 ∈ [0, 1] ,

𝑧 (𝑥, 0) = 𝑧0 (𝑥) , 𝑥 ∈ [0, 1] ,
𝑌𝑜𝑢𝑡 = 𝑢 (1, 𝑡) , 𝑡 ≥ 0,

(1)

where 𝑢0, 𝑢1, and 𝑧0 are the initial state, 𝑌𝑜𝑢𝑡 is the perfor-
mance output, 𝑑(𝑡) is the disturbance, and 𝑈 : [0,∞) → R

is the control input. Considering the control plant (1) in the
state spaceH = C𝑛×𝐻1(0, 1)×𝐿2(0, 1), we are going to design
a control law so that the performance output 𝑌𝑜𝑢𝑡 tracks the
given reference signal 𝑌𝑟𝑒𝑓 in the presence of the external
disturbance 𝑑.

Recently, the performance output tracking for a wave
equation with harmonic disturbance is considered in [1]
where the control and disturbance are unmatched. In [2],
the same problem is also studied for a wave with a general
boundary disturbance by the disturbance treatment tech-
nique which is firstly proposed in [3]. These results were
extended to regulate the output of a Schrödinger equation in
[4, 5]. However, the literature mentioned above is considered
in a relative easy situation where the performance output
is always collocated to the control actuation. Therefore,
one of the objectives of this paper is to deal with the
problem that the performance output is not collocated to
the control actuation. The latest progress of this problem is
considered in [6–9]. They use the method of backstepping,
servo system, and the adaptive control approach to solve
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the performance output regulation problem in noncollocated
case.Theproposedmethod design can also be extended to the
more general control system. Meanwhile, [10, 11] construct
various controllers to solve the robust output regulation of
distribution parameter systems by internal model principle.
Different from the methods mentioned above, in this paper,
a novel auxiliary trajectory and servomechanism is designed
to cope with the noncollocated problem for system (1).

In addition, the problem of the output regulation for
cascaded system is seldom considered. Concerning the cas-
caded system, a lot of results have been obtained only for
stabilization problem [12–15]. In view of this reason, another
objective of this paper is to solve the problem of the output
regulation for the cascaded system (1) by a novel method of
auxiliary trajectory and servomechanism.

For the disturbance and the reference signal, in system (1),
both 𝑑(𝑡) and 𝑌𝑟𝑒𝑓 are supposed to be the harmonic signals of
the following form:

𝑑 (𝑡) = 𝑚∑
𝑗=0

𝐴𝑗 sin𝜔𝑗𝑡 + 𝐵𝑗 cos𝜔𝑗𝑡, 𝑚 ∈ N,

𝑌𝑟𝑒𝑓 (𝑡) =
�̃�∑
𝑘=0

𝐴𝑘 sin �̃�𝑘𝑡 + 𝐵𝑘 cos �̃�𝑘𝑡, �̃� ∈ N,
(2)

where 𝐴𝑘, 𝐵𝑘, 𝐴𝑗, 𝐵𝑗 are unknown amplitudes and 𝜔𝑗, �̃�𝑘 are
known frequencies, 𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . , �̃�. By a
simple computation, both of them can be rewritten as an
output of the following exosystem:

V̇ (𝑡) = 𝐺V (𝑡) , 𝑡 ≥ 0,
𝑌𝑟𝑒𝑓 = 𝐹V (𝑡) , 𝑡 ≥ 0,
𝑑 (𝑡) = 𝑄V (𝑡) , 𝑡 ≥ 0,
V (0) = V0,

(3)

where 𝐺 ∈ R𝑛×𝑛 is the system matrix; 𝐹 and 𝑄 are known𝑛-dimensional row vectors; and the initial state V0 depends
on the amplitudes 𝐴𝑘, 𝐵𝑘, 𝐴𝑗, 𝐵𝑗 and hence is unknown.
Throughout this paper, we always assume that 𝐺 is invertible
and diagonalizable with 𝜎(𝐺) = {𝜆𝑖}𝑛𝑖=1 ⊂ 𝑖R/{0} and
Re⟨𝐺𝑥, 𝑥⟩C𝑛 = 0, ∀𝑥 ∈ C𝑛. Under this assumption, the
general harmonic signal can be written as an output of
the exosystem (3). With this assumption, the mathematical
foundations of the output regulation problem in question can
be found in [16, 17].

Now, we need to design a controller such that the
regulation error 𝑌𝑒 = 𝑌𝑟𝑒𝑓 − 𝑌𝑜𝑢𝑡 (the only measurement for
controller design) satisfies

lim
𝑡→∞

𝑌𝑒 (𝑡) = lim
𝑡→∞

[𝑌𝑟𝑒𝑓 (𝑡) − 𝑌𝑜𝑢𝑡 (𝑡)] = 0. (4)

We proceed as follows. In Section 2, the servomechanism
will be designed by the method of auxiliary trajectory and
the negative impacts of the unmatched disturbance will be
canceled. In Section 3, the controller will be designed and
the performance output regulation problem will be solved

under the control feedback. In Section 4, we design an
observer based on error signal and prove the convergence
of the observer by the Lyapunov functional method. In
Section 5, the uniform boundedness of the loop system will
be presented and proved. Section 6 presents some numerical
simulations to illustrate the effectiveness of the control law,
followed by concluding remarks in Section 7.

2. Trajectory Planning for the Disturbance

In this section, we are going to cancel the negative impacts of
the disturbance by trajectory planning. We first consider the
unmatched disturbance𝑄V(𝑡) in (1). Inspired by [18], we need
to find the transformation to convert system (1) into the target
system that is a disturbance free system, and at the same, both
the controller and the output keep invariant. For this purpose,
we suppose that the auxiliary trajectory satisfies the following
system:

𝜙𝑡 (𝑥, 𝑡) = 𝜙𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜙𝑥 (0, 𝑡) = 𝑄V (𝑡) , 𝑡 ≥ 0,
𝜙 (0, 𝑡) = 𝑃1V (𝑡) , 𝑡 ≥ 0,

(5)

where𝑃1 is an 𝑛-dimensional row vector such that 𝜙(1, 𝑡) = 0.
Inspired by [18] and [19, Chapter 12], again, we try to find a
special solution of system (5) in the following form:

𝜙 (𝑥, 𝑡) = ∞∑
𝑛=0

𝛼𝑛 (𝑡) 𝑥
𝑛

𝑛! , 𝑥 ∈ [0, 1] , 𝑡 ≥ 0. (6)

Inserting (6) into system (5), we have

�̇�𝑛 (𝑡) = 𝛼𝑛+2 (𝑡) , 𝑛 = 0, 1, 2 ⋅ ⋅ ⋅
𝛼0 (𝑡) = 𝑃1V (𝑡) ,
𝛼1 (𝑡) = 𝑄V (𝑡) ,

(7)

which leads to

𝜙 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑃1V𝑛 (𝑡) 𝑥2𝑛
(2𝑛)! +

∞∑
𝑛=0

𝑄V𝑛 (𝑡) 𝑥2𝑛+1
(2𝑛+)!

= 𝑃1 (
∞∑
𝑛=0

𝐺𝑛𝑥2𝑛
(2𝑛)! ) V (𝑡) + 𝑄(∞∑

𝑛=0

𝐺𝑛𝑥2𝑛+1
(2𝑛 + 1)!) V (𝑡)

= [𝑃1 cosh (𝑥𝐺1/2) + 𝑄𝐺−1/2 sinh (𝑥𝐺1/2)] V (𝑡) .

(8)

Since 𝜙(1, 𝑡) = 0, we get
𝜙 (1, 𝑡) = [𝑃1 cosh (𝐺1/2) + 𝑄𝐺−1/2 sinh (𝐺1/2)] V (𝑡)

= 0 (9)

or equivalently

𝑃1 = −𝑄𝐺−1/2 tanh (𝐺1/2) . (10)
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We suppose

𝜓𝑡𝑡 (𝑥, 𝑡) = 𝜓𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜓𝑥 (1, 𝑡) = 𝑐0𝜓𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝜓 (1, 𝑡) = 𝑃2V (𝑡) , 𝑡 ≥ 0,

(11)

where 𝑃2 is an 𝑛-dimensional row vector such that 𝜓𝑥(0, 𝑡) =𝑐1𝜙(0, 𝑡)−𝑐2𝜓(0, 𝑡). We try to find a special solution of system
(11) in the following form:

𝜓 (𝑥, 𝑡) = ∞∑
𝑛=0

𝛽𝑛 (𝑡) (𝑥 − 1)
𝑛

𝑛! , 𝑥 ∈ [0, 1] , 𝑡 ≥ 0. (12)

Inserting (11) into system (12), we have

̈𝛽𝑛 (𝑡) = 𝛽𝑛+2 (𝑡) , 𝑛 = 0, 1, 2 . . .
𝛽0 (𝑡) = 𝑃2V (𝑡) ,
𝛽1 (𝑡) = 𝑐0𝑃2𝐺V (𝑡) ,

(13)

which leads to

𝜓 (𝑥, 𝑡) = 𝑃2 cosh ((𝑥 − 1) 𝐺) V (𝑡)
+ 𝑐0𝑃2 sinh ((𝑥 − 1) 𝐺) V (𝑡) . (14)

Since 𝜓𝑥(0, 𝑡) = 𝑐1𝜙(0, 𝑡) − 𝑐2𝜓(0, 𝑡), we get
𝜓𝑥 (0, 𝑡) = 𝑃2 sinh (−𝐺)𝐺V (𝑡) + 𝑐0𝑃2 cosh (−𝐺)𝐺V (𝑡)

= 𝑐1𝑃1V (𝑡)
− 𝑐2 (𝑃2 cosh (−𝐺) V (𝑡) + 𝑐0𝑃2 sinh (−𝐺) V (𝑡)) ,

(15)

or equivalently

𝑃2 = 𝑐1𝑃1 ⋅ 𝐻−1, (16)

where

𝐻 = sinh (−𝐺)𝐺 + 𝑐0 cosh (−𝐺)𝐺 + 𝑐2cosh (−𝐺)
+ 𝑐2𝑐0 sinh (−𝐺) . (17)

If we let

𝜌 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝜓 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] , 𝑡 ≥ 0,
𝜑 (𝑥, 𝑡) = 𝑧 (𝑥, 𝑡) − 𝜙 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] , 𝑡 ≥ 0, (18)

then, by (1), (5), and (11)

𝜌𝑡𝑡 (𝑥, 𝑡) = 𝜌𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜌𝑥 (1, 𝑡) = 𝑐0𝜌𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝜌𝑥 (0, 𝑡) = 𝑐1𝜑 (0, 𝑡) − 𝑐2𝜌 (0, 𝑡) , 𝑡 ≥ 0,
𝜑𝑡 (𝑥, 𝑡) = 𝜑𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜑𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝜑 (1, 𝑡) = 𝑈 (𝑡) , 𝑡 ≥ 0,

V̇ (𝑡) = 𝐺V (𝑡) , 𝑡 ≥ 0,

(19)

and
𝑌𝑒 (𝑡) = 𝑌𝑟𝑒𝑓 (𝑡) − 𝜓 (1, 𝑡) − 𝜌 (1, 𝑡)

= (𝐹 − 𝑃2) V (𝑡) − 𝜌 (1, 𝑡) .
(20)

Comparing system (1) with system (19), one can find that the
disturbance 𝑄V(𝑡) in system (1) has been canceled in system
(19). The next objective is to stabilize the regulation error 𝑌𝑒.
To this end, we will apply the trajectory planning again to
bring the external signal (𝐹−𝑃2)V(𝑡) into the control channel
such that the regulation error 𝑌𝑒 translates into a state of the
target system. Naturally, we only need to stabilize the target
system to achieve our goal.

We suppose that the trajectory satisfies the following
system:

𝜂𝑡𝑡 (𝑥, 𝑡) = 𝜂𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜂𝑥 (1, 𝑡) = −𝑐0𝜂𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝜂𝑥 (0, 𝑡) = 𝑐1𝜇 (0, 𝑡) − 𝑐2𝜂 (0, 𝑡) , 𝑡 ≥ 0,
𝜇𝑡 (𝑥, 𝑡) = 𝜇𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜇𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝜇 (1, 𝑡) = 𝑃3V (𝑡) , 𝑡 ≥ 0,

(21)

where 𝑃3 is an 𝑛-dimensional row vector that will be deter-
mined later.

Suppose that the “𝜌-part” of (21) satisfies
𝜂𝑡𝑡 (𝑥, 𝑡) = 𝜂𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜂𝑥 (1, 𝑡) = −𝑐0𝜂𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝜂 (1, 𝑡) = (𝐹 − 𝑃2) V (𝑡) , 𝑡 ≥ 0.

(22)

Taking (5), (6), (7)n and (8) into account, system (22) admits
a special solution

𝜂 (𝑥, 𝑡) = (𝐹 − 𝑃2) cosh ((𝑥 − 1) 𝐺) V (𝑡)
+ 𝑐0 (𝐹 − 𝑃2) sinh ((𝑥 − 1) 𝐺) V (𝑡) . (23)

It implies that

𝜂𝑥 (0, 𝑡) = (𝐹 − 𝑃2) sinh (−𝐺)𝐺V (𝑡)
+ 𝑐0 (𝐹 − 𝑃2) cosh (−𝐺)𝐺V (𝑡) ,

𝜂𝑥 (0, 𝑡) = 𝑐1𝜇 (0, 𝑡) − 𝑐2𝜂 (0, 𝑡) .
(24)

From (24), we have

𝜇 (0, 𝑡) = 1
𝑐1 (𝐹 − 𝑃2) ⋅ 𝐻 ⋅ V (𝑡) , (25)

where𝐻 is defined by (17).
Suppose that the “𝜇-part” of (21) satisfies

𝜇𝑡 (𝑥, 𝑡) = 𝜇𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜇𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝜇 (0, 𝑡) = 1

𝑐1 (𝐹 − 𝑃2) ⋅ 𝐻 ⋅ V (𝑡) , 𝑡 ≥ 0.
(26)
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We will find a special solution for “𝜇-part” of (26) that takes
the form

𝜇 (𝑥, 𝑡) = ∞∑
𝑛=0

𝜉𝑛 (𝑡) 𝑥
𝑛

𝑛! , 𝑥 ∈ [0, 1] , 𝑡 ≥ 0. (27)

Hence,

𝜇 (𝑥, 𝑡) = 1
𝑐1 (𝐹 − 𝑃2) ⋅ 𝐻 ⋅ cosh (𝑥𝐺1/2) V (𝑡) . (28)

More specifically,

𝜇 (1, 𝑡) = 𝑃3V (𝑡) = 1
𝑐1 (𝐹 − 𝑃2) ⋅ 𝐻 ⋅ cosh (𝐺1/2) V (𝑡) . (29)

Or equivalently

𝑃3 = 1
𝑐1 (𝐹 − 𝑃2) ⋅ 𝐻 ⋅ cosh (𝐺1/2) . (30)

If we let

𝜀 (𝑥, 𝑡) = 𝜂 (𝑥, 𝑡) − 𝜌 (𝑥, 𝑡) ,
𝛾 (𝑥, 𝑡) = 𝜇 (𝑥, 𝑡) − 𝜑 (𝑥, 𝑡) , (31)

then, by (19) and (21),

𝜀𝑡𝑡 (𝑥, 𝑡) = 𝜀𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜀𝑥 (1, 𝑡) = −𝑐0𝜀𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝜀𝑥 (0, 𝑡) = 𝑐1𝛾 (0, 𝑡) + 𝑐2𝜀 (0, 𝑡) , 𝑡 ≥ 0,
𝛾𝑡 (𝑥, 𝑡) = 𝛾𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝛾𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝛾 (1, 𝑡) = 𝑃3V (𝑡) − 𝑈 (𝑡) , 𝑡 ≥ 0,

(32)

and

𝑌𝑒 (𝑡) = (𝐹 − 𝑃2) V (𝑡) − 𝜌 (1, 𝑡) = 𝜂 (1, 𝑡) − 𝜑 (1, 𝑡)
= 𝜀 (1, 𝑡) . (33)

3. Controller Design

Equation (33) implies that we only need to stabilize system
(32) to achieve output regulation (1) without input delay. In
this way, the controller with 𝜏 = 0 can be designed easily

𝑈 (𝑡) = 𝑃3V (𝑡) = 1
𝑐1 (𝐹 − 𝑃2) ⋅ 𝐻 ⋅ cosh (𝐺1/2) V (𝑡) , (34)

under which, we get the closed-loop system of (34)

V̇ (𝑡) = 𝐺V (𝑡) , 𝑡 ≥ 0,
𝑢𝑡𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝑢𝑥 (1, 𝑡) = −𝑐0𝑢𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝑢𝑥 (0, 𝑡) = 𝑐1𝑧 (0, 𝑡) + 𝑐2𝑢 (0, 𝑡) , 𝑡 ≥ 0,

𝑧𝑡 (𝑥, 𝑡) = 𝑧𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝑧𝑥 (0, 𝑡) = 𝑑 (𝑡) , 𝑡 ≥ 0,
𝑧 (1, 𝑡) = 1

𝑐1 (𝐹 − 𝑃2) ⋅ 𝐻 ⋅ cosh (𝐺1/2) V (𝑡) , 𝑡 ≥ 0,
𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ [0, 1] ,
𝑢t (𝑥, 0) = 𝑢1 (𝑥) , 𝑥 ∈ [0, 1] ,
𝑧 (𝑥, 0) = 𝑧0 (𝑥) , 𝑥 ∈ [0, 1] .

(35)

Theorem1. For any initial state (V(0), 𝑢(⋅, 0), 𝑧(⋅, 0)) ∈ H, sys-
tem (35) has unique solution (V(𝑡), 𝑢(⋅, 𝑡), 𝑧(⋅, 𝑡)) ∈ 𝐶([0,∞);
H) such that, for any 𝑡0 > 0,

𝑌𝑒 (𝑡) ≤ 𝐿1𝑒−𝜔1𝑡, ∀𝑡 ≥ 𝑡0, (36)

where 𝐿1 and 𝜔1 are two positive constants. Moreover, the state
of the closed-loop system (35) is uniformly bounded

sup
𝑡∈[0,∞]

‖V (𝑡) , 𝑢 (⋅, 𝑡) , 𝑧 (⋅, 𝑡)‖H < +∞. (37)

Proof. We first consider the following transformed system:

𝜀𝑡𝑡 (𝑥, 𝑡) = 𝜀𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜀𝑥 (1, 𝑡) = −𝑐0𝜀𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝜀𝑥 (0, 𝑡) = 𝑐1𝛾 (0, 𝑡) + 𝑐2𝜀 (0, 𝑡) , 𝑡 ≥ 0,
𝛾𝑡 (𝑥, 𝑡) = 𝛾𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝛾𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝛾 (1, 𝑡) = 0, 𝑡 ≥ 0,

(38)

with the initial state

𝜀 (𝑥, 0) = 𝜓 (𝑥, 0) + 𝜂 (𝑥, 0) − 𝑢 (𝑥, 0) , 𝑥 ∈ [0, 1] ,
𝛾 (𝑥, 0) = 𝜇 (𝑥, 0) + 𝜙 (𝑥, 0) − 𝑧 (𝑥, 0) , 𝑥 ∈ [0, 1] , (39)

where 𝜓, 𝜂, 𝜇, and 𝜙 are defined by (14), (23), (28), and (8),
respectively. As system (38) is a cascade of the heat equation
and the wave equation and the “𝛾-subsystem” of (38) is
independent of the “𝜀-subsystem”, it is well known that there
exists a unique solution (𝜀(⋅, 𝑡), 𝛾(⋅, 𝑡)) ∈ 𝐶([0,∞);𝐻1(0, 1) ×𝐿2(0, 1)) to system (38).

Consider the Lyapunov function

𝑉 = 1
2 (∫
1

0
𝜀2𝑥𝑑𝑥 + ∫

1

0
𝜀2𝑡 𝑑𝑥 + 𝑐2𝜀2 (0))

+ 𝛿∫1
0
(1 + 𝑥) 𝜀𝑥 (𝑥) 𝜀𝑡 (𝑥) 𝑑𝑥 + 1

2 ∫
1

0
𝛾2 (𝑥) 𝑑𝑥.

(40)

Using theCauchy-Schwarz andYong’s inequalities, there exist𝑚1, 𝑚2 such that

𝑚1Π ≤ 𝑉 ≤ 𝑚2Π, (41)
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where

Π = ∫1
0
𝜀2𝑥𝑑𝑥 + ∫

1

0
𝜀2𝑡 𝑑𝑥 + 𝜀2 (0) + ∫

1

0
𝛾2 (𝑥) 𝑑𝑥. (42)

Therefore 𝑉 is positive definite.
The derivative of 𝑉 along the solution of system (38) is

𝑑𝑉
𝑑𝑡 = ∫1

0
𝜀𝑥𝜀𝑡𝑥𝑑𝑥 + ∫

1

0
𝜀𝑡𝜀𝑡𝑡𝑑𝑥 + 𝑐2𝜀 (0) 𝜀𝑡 (0)

+ 𝛿∫1
0
(1 + 𝑥) (𝜀𝑥𝑡𝜀𝑡 + 𝜀𝑥𝜀𝑡𝑡) 𝑑𝑥 + ∫

1

0
𝛾𝛾𝑡𝑑𝑥

= ∫1
0
𝜀𝑥𝜀𝑡𝑥𝑑𝑥 + ∫

1

0
𝜀𝑡𝜀𝑥𝑥𝑑𝑥

+ (𝜀𝑥 (0, 𝑡) − 𝑐1𝛾 (0, 𝑡)) 𝜀𝑡 (0)
+ 𝛿∫1
0
(1 + 𝑥) (𝜀𝑥𝑡𝜀𝑡 + 𝜀𝑥𝜀𝑥𝑥) 𝑑𝑥 + ∫

1

0
𝛾𝛾𝑥𝑥𝑑𝑥

= ∫1
0
𝜀𝑥𝜀𝑡𝑥𝑑𝑥 − ∫

1

0
𝜀𝑥𝑡𝜀𝑥𝑑𝑥 + 𝜀𝑥 (1) 𝜀𝑡 (1)

− 𝑐1𝛾 (0, 𝑡) 𝜀𝑡 (0)
+ 𝛿∫1
0
(1 + 𝑥) (𝜀𝑥𝑡𝜀𝑡 + 𝜀𝑥𝜀𝑥𝑥) 𝑑𝑥 − ∫

1

0
𝛾2𝑥𝑑𝑥

≤ −𝑐0𝜀2𝑡 (1) − 𝑐1𝛾 (0, 𝑡) 𝜀𝑡 (0)
+ 𝛿
2 [(1 + 𝑥) (𝜀2𝑡 + 𝜀2𝑥)]10 − 𝛿

2 ∫
1

0
(𝜀2𝑡 + 𝜀2𝑥) 𝑑𝑥

− ∫1
0
𝛾2𝑥𝑑𝑥

≤ − (𝑐0 − 𝛿 − 𝛿𝑐20 ) 𝜀2𝑡 (1) − (𝛿2 − 𝑐12 ) 𝜀2𝑡 (0)

− 𝛿
2 ∫
1

0
(𝜀2𝑡 + 𝜀2𝑥) 𝑑𝑥

− (1 − 𝑐12 − 𝛿𝑐1𝑐2)∫
1

0
𝛾2𝑑𝑥

− (𝛿𝑐22 − 2𝛿𝑐1𝑐2) 𝜀2 (0)

(43)

which is negative definite for

0 < 𝑐1 < 1
2 ,

2𝑐1 < 𝑐2 < 1,
𝑐1 < 𝛿 < 𝑐01 + 𝑐20 .

(44)

It follows from (40) and (41) that

Π (𝑡) ≤ 𝑀𝑒−𝑡/𝑀Π (0) (45)

for some possibly large 𝑀, which proves the exponential
stability of the “𝜀 − 𝛾” system.

On the other hand, since the “V-subsystem” of (35) is
independent of the other subsystems, it admits a unique
solution V(𝑡) ∈ 𝐶([0,∞);C𝑛).

We define

𝑢 (𝑥, 𝑡) = 𝜓 (𝑥, 𝑡) + 𝜂 (𝑥, 𝑡) − 𝜀 (𝑥, 𝑡) ,
𝑥 ∈ [0, 1] , 𝑡 ≥ 0,

𝑧 (𝑥, 𝑡) = 𝜇 (𝑥, 𝑡) + 𝜙 (𝑥, 𝑡) − 𝛾 (𝑥, 𝑡) ,
𝑥 ∈ [0, 1] , 𝑡 ≥ 0,

(46)

where 𝜓, 𝜂, 𝜇, and 𝜙 are defined by (14), (23), (28), and
(8), respectively. Now, it is easy to verify that such a defined(V(𝑡), 𝑢(⋅, 𝑡), 𝑧(⋅, 𝑡)) ∈ 𝐶([0,∞);H) is a solution of system
(35).Moreover, the uniformly bounded (37) holds due to (45),
(46), and the fact that 𝐺 is dissipative.

The proof is complete.

4. Observer Design

In this section, one will design the observer for V(𝑡). Accord-
ing to the ideal of [18], the state observer can be designed as
follows:

̇̂V (𝑡) = 𝐺V̂ (𝑡) + 𝑐3 (𝐹 − 𝑃2)∗
⋅ [− ̇𝑦𝑒 (𝑡) − 𝜌𝑡 (1, 𝑡) + (𝐹 − 𝑃2) 𝐺V̂ (𝑡)] , 𝑡 ≥ 0,

𝜌𝑡𝑡 (𝑥, 𝑡) = 𝜌𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜌𝑥 (1, 𝑡) = −𝑐0𝜌𝑡 (1, 𝑡) − 𝑐3𝑦𝑒 (𝑡) − 𝑐3𝜌 (1, 𝑡)

+ 𝑐3 (𝐹 − 𝑃2) V̂ (𝑡) , 𝑡 ≥ 0,
𝜌𝑥 (0, 𝑡) = 𝑐1𝜑 (0, 𝑡) + 𝑐2𝜌 (0, 𝑡) , 𝑡 ≥ 0,
𝜑𝑡 (𝑥, 𝑡) = 𝜑𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜑𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝜑 (1, 𝑡) = 𝑈 (𝑡) , 𝑡 ≥ 0,

(47)

where 0 < 𝑐3 < 1 is the tuning parameter and 𝐾 = 𝐹 − 𝑃1 is
the conjugate transpose of 𝐾∗.

Let

Ṽ (𝑥, 𝑡) = V (𝑥, 𝑡) − V̂ (𝑥, 𝑡) ,
𝜌 (𝑥, 𝑡) = 𝜌 (𝑥, 𝑡) − 𝜌 (𝑥, 𝑡) ,
𝜑 (𝑥, 𝑡) = 𝜑 (𝑥, 𝑡) − 𝜑 (𝑥, 𝑡) .

(48)

We have the error system as follows:

̇̃V (𝑡) = 𝐺Ṽ (𝑡) − 𝑐3𝐾∗𝜌𝑡 (1, 𝑡) + 𝑐3𝐾∗𝐾𝐺Ṽ (𝑡) ,
𝑡 ≥ 0,

𝜌𝑡𝑡 (𝑥, 𝑡) = 𝜌𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
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𝜌𝑥 (1, 𝑡) = −𝑐0𝜌𝑡 (1, 𝑡) − 𝑐3𝜌 (1, 𝑡) − 𝑐3𝐾Ṽ (𝑡) , 𝑡 ≥ 0,
𝜌𝑥 (0, 𝑡) = 𝑐1𝜑 (0, 𝑡) + 𝑐2𝜌 (0, 𝑡) , 𝑡 ≥ 0,
𝜑𝑡 (𝑥, 𝑡) = 𝜑𝑥𝑥, 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜑𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝜑 (1, 𝑡) = 0, 𝑡 ≥ 0,

(49)

where 𝑐3 is the tuning parameter and 𝐾 = 𝐹 − 𝑃2 is the
conjugate transpose of 𝐾∗.

Moreover, we have the following theorem.

Theorem 2. Suppose that 𝐺 + 𝑐3𝐾∗𝐾𝐺 is Hurwitz. �en
solution of system (49) is asymptotically stable.

Proof. Since 𝐺 + 𝑐3𝐾∗𝐾 is Hurwitz, there exists a positive
constant 𝑎1 such that

(𝐺 + 𝑐3𝐾∗𝐾) |Ṽ|2 ≤ −𝑎1 ‖Ṽ‖2C𝑛 . (50)

Consider the following Lyapunov function.

𝑉1 = 1
2 |Ṽ|2

+ 1
2 (∫
1

0
𝜌2𝑥𝑑𝑥 + ∫

1

0
𝜌2𝑡 𝑑𝑥 + 𝑐2𝜌2 (0) + 𝑐3𝜌2 (1))

+ 1
2 ∫
1

0
𝜑2 (𝑥) 𝑑𝑥

(51)

The derivative of 𝑉1 along the solution of system (49) is

𝑑𝑉1𝑑𝑡 = Ṽ ̇̃V + ∫1
0
𝜌𝑥𝜌𝑡𝑥𝑑𝑥 + ∫

1

0
𝜌𝑡𝜌𝑡𝑡𝑑𝑥 + 𝑐2𝜌 (0) 𝜌𝑡 (0)

+ ∫1
0
𝜑𝜑𝑡𝑑𝑥 + 𝑐3𝜌 (1) 𝜌𝑡 (1)

= (𝐺 + 𝑐3𝐾∗𝐾) |Ṽ|2 (𝑡) + 𝑐3𝐾∗𝜌𝑡 (1, 𝑡) Ṽ (𝑡)
+ ∫1
0
𝜌𝑥𝜌𝑡𝑥𝑑𝑥 + ∫

1

0
𝜌𝑡𝜌𝑥𝑥𝑑𝑥 + 𝑐2𝜌 (0) 𝜌𝑡 (0)

+ ∫1
0
𝜑𝜑𝑡𝑑𝑥 + 𝑐3𝜌 (1) 𝜌𝑡 (1)

= (𝐺 + 𝑐3𝐾∗𝐾) |Ṽ|2 (𝑡)
+ 𝑐3𝐾∗𝜌𝑡 (1, 𝑡) V (𝑡) + ∫1

0
𝜌𝑥𝜌𝑡𝑥𝑑𝑥 + 𝜌𝑡𝜌𝑥


1

0

− ∫1
0
𝜌𝑥𝑡𝜌𝑥𝑑𝑥 + (𝜌𝑥 (0) − 𝑐1𝜑 (0)) 𝜌𝑡 (0)

+ ∫1
0
𝜑𝜑𝑥𝑥𝑑𝑥 + 𝑐3𝜌 (1) 𝜌𝑡 (1)

≤ (𝐺 + 𝑐3𝐾∗𝐾) |Ṽ|2 (𝑡) + 𝑐3𝐾∗𝜌𝑡 (1) Ṽ (𝑡)
− 𝑐0 𝜌𝑡 (1)2 − 𝑐3𝜌 (1) 𝜌𝑡 (1) − 𝑐3𝐾Ṽ (𝑡) 𝜌𝑡 (1)
− 𝑐1𝜑 (0) 𝜌𝑡 (0) − ∫

1

0
𝜑2𝑥𝑑𝑥 + 𝑐3𝜌 (1) 𝜌𝑡 (1)

≤ −𝑎1 ‖V‖2C𝑛 − 𝑐0 𝜌𝑡 (1)2

+ 𝑐12 (𝜑 (0)2 + 𝜌𝑡 (0)2) − ∫
1

0
𝜑2𝑥𝑑𝑥

≤ −𝑎1 ‖V‖2C𝑛 − (𝑐0 − 𝑐12 ) 𝜌𝑡 (1)
2

− (1 − 𝑐12 )∫
1

0
𝜑2𝑥𝑑𝑥

(52)

which is negative definite for

𝑐1 < 2,
𝑐0 > 𝑐12 .

(53)

This completes the proof of the theorem.

Theorem 3. Suppose that𝐺+𝑐3𝐾∗𝐾 is Hurwitz.�en, for any
initial state (V(0), 𝜌(⋅, 0), 𝜑(⋅, 0), V̂(0), 𝜑(⋅, 0), �̂�(⋅, 0)) ∈ H2 and𝑈 ∈ 𝐻1𝑙𝑜𝑐(0,∞), system (14)-(47) admits a unique solution

(V (𝑡) , 𝜌 (⋅, 𝑡) , 𝜑 (⋅, 𝑡) , V̂ (𝑡) , 𝜌 (⋅, 𝑡) , 𝜑 (⋅, 𝑡))
∈ 𝐶 ([0,∞) ;H2) (54)

such that(V (𝑡) − V̂ (𝑡) , 𝜌 (⋅, 𝑡) − 𝜌 (⋅, 𝑡) , 𝜑 (⋅, 𝑡) − 𝜑 (⋅, 𝑡))H
→ 0 𝑎𝑠 𝑡 → ∞. (55)

Proof. It is well known that, for any (V(0), 𝜌(⋅, 0), 𝜑(⋅, 0)) ∈ H

and 𝑈 ∈ 𝐻1𝑙𝑜𝑐(0,∞), system (19) admits a unique solution

(V (𝑡) , 𝜌 (⋅, 𝑡) , 𝜑 (⋅, 𝑡)) ∈ 𝐶 ([0,∞) ;H) . (56)

FromTheorem 2, we know that system (49) admits a unique
solution (Ṽ(𝑡), 𝜌(⋅, 𝑡), 𝜑(⋅, 𝑡)) ∈ 𝐶([0,∞);H) with initial state(Ṽ(0), 𝜌(⋅, 0), 𝜑(⋅, 0)) = (V(0) − V̂(0), 𝜌(⋅, 0) − 𝜌(⋅, 0), 𝜑(⋅, 0) −𝜑(⋅, 0), ) such that

(Ṽ (𝑡) , 𝜑 (⋅, 𝑡) , �̃� (⋅, 𝑡))H → 0 𝑎𝑠 𝑡 → ∞. (57)

Then, we define

V̂ (𝑡) = V (𝑡) − Ṽ (𝑡) , 𝑥 ∈ [0, 1] ,
𝜌 (𝑥, 𝑡) = 𝜌 (𝑥, 𝑡) − 𝜌 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] ,
𝜑 (𝑥, 𝑡) = 𝜑 (𝑥, 𝑡) − 𝜑 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] ,

(58)

Hence, (V(𝑡), 𝜌(⋅, 𝑡), 𝜑(⋅, 𝑡), V̂(𝑡), 𝜌(⋅, 𝑡), 𝜑(⋅, 𝑡)) ∈ 𝐶([0,∞);H2)
is a solution of system (19)-(47). Moreover, by (57) and (58),
we can see (55) holds. The proof is complete.
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5. The Uniform Boundedness of
the Loop System

Replacing V with V̂, one will obtain the following closed-
system of (1):

V̇ (𝑡) = 𝐺V (𝑡) , 𝑡 ≥ 0,
𝑢𝑡𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝑢𝑥 (0, 𝑡) = 𝑐1𝑧 (0, 𝑡) + 𝑐2𝑢 (0, 𝑡) , 𝑡 ≥ 0,
𝑢𝑥 (1, 𝑡) = −𝑐0𝑢𝑡 (1, 𝑡) , 𝑡 ≥ 0,
𝑧𝑡 (𝑥, 𝑡) = 𝑧𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝑧𝑥 (0, 𝑡) = 𝑑 (𝑡) , 𝑡 ≥ 0,
𝑧 (1, 𝑡) = 𝑈 (𝑡) , 𝑡 ≥ 0,
̇̂V (𝑡) = 𝐺V̂ (𝑡) + 𝑐3 (𝐹 − 𝑃2)∗
⋅ [− ̇𝑦𝑒 (𝑡) − 𝜌𝑡 (1, 𝑡) + (𝐹 − 𝑃2) 𝐺V̂ (𝑡)] , 𝑡 ≥ 0,

𝜌𝑡𝑡 (𝑥, 𝑡) = 𝜌𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜌𝑥 (1, 𝑡) = −𝑐0𝜌𝑡 (1, 𝑡) − 𝑐3𝑦𝑒 (𝑡) − 𝑐3𝜌 (1, 𝑡)

+ 𝑐3 (𝐹 − 𝑃2) V̂ (𝑡) , 𝑡 ≥ 0,
𝜌𝑥 (0, 𝑡) = 𝑐1𝜑 (0, 𝑡) + 𝑐2𝜌 (0, 𝑡) , 𝑡 ≥ 0,
𝜑𝑡 (𝑥, 𝑡) = 𝜑𝑥𝑥 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,
𝜑𝑥 (0, 𝑡) = 0, 𝑡 ≥ 0,
𝜑 (1, 𝑡) = 𝑈 (𝑡) , 𝑡 ≥ 0.

(59)

Moreover, one has the following theorem.

Theorem4. Suppose that𝐺+𝑐3𝐾∗𝐾 is Hurwitz.�en, for any
initial state (V(0), 𝑢(⋅, 0), 𝑧(⋅, 0), V̂(0), 𝜌(⋅, 0), 𝜑(⋅, 0)) ∈ H2, the
closed-loop (59) admits a unique solution

(V (𝑡) , 𝑢 (⋅, 𝑡) , 𝑧 (⋅, 𝑡) , V̂ (𝑡) , 𝜌 (⋅, 𝑡) , 𝜑 (⋅, 𝑡))
∈ 𝐶 ([0,∞) ;H2) (60)

such that

‖𝑑 (𝑡) − 𝑄V̂ (𝑡)‖𝐶𝑛 + 𝑌𝑒 (𝑡) → 0 𝑎𝑠 𝑡 → ∞. (61)

If we assume further that 𝐺 is dissipative, then the state of
system is uniformly bounded

sup
𝑡∈[0,∞)

(V (𝑡) , 𝑢 (⋅, 𝑡) , 𝑧 (⋅, 𝑡) , V̂ (𝑡) , 𝜌 (⋅, 𝑡) , 𝜑 (⋅, 𝑡))H2
< ∞.

(62)

Proof. According to Theorems 1 and 3, system (59) admits a
unique solution

(V (𝑡) , 𝑢 (⋅, 𝑡) , 𝑧 (⋅, 𝑡) , V̂ (𝑡) , 𝜑 (⋅, 𝑡) , �̂� (⋅, 𝑡))
∈ 𝐶 ([0,∞) ;H2) (63)

with initial state (V(0), 𝑢(⋅, 0), 𝑧(⋅, 0), V̂(0), 𝜑(⋅, 0), �̂�(⋅, 0)) ∈
H2.

Next, We define

𝑢 (𝑥, 𝑡) = 𝜓 (𝑥, 𝑡) + 𝜂 (𝑥, 𝑡) − 𝜀 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] ,
𝑧 (𝑥, 𝑡) = 𝜇 (𝑥, 𝑡) + 𝜙 (𝑥, 𝑡) − 𝛾 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] ,
𝜑 (𝑥, 𝑡) = 𝜑 (𝑥, 𝑡) − 𝜑 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] ,
𝜌 (𝑥, 𝑡) = 𝜌 (𝑥, 𝑡) − 𝜌 (𝑥, 𝑡) , 𝑥 ∈ [0, 1] ,

V̂ (𝑡) = V (𝑡) − Ṽ (𝑡) , 𝑥 ∈ [0, 1] ,

(64)

and, byTheorems 1 and 2, it is easy to check

sup
𝑡∈[0,∞)

(V (𝑡) , 𝑢 (⋅, 𝑡) , 𝑧 (⋅, 𝑡) , V̂ (𝑡) , 𝜌 (⋅, 𝑡) , 𝜑 (⋅, 𝑡))H2
< ∞.

(65)

By (36) and (56), we can see (61) holds.The proof is complete.

6. Numerical Simulation

In this section, one presents some numerical simulations to
validate our theory results. We give the numerical simulation
results for system (V, 𝑢, V̂, 𝜑) which is governed by (59). The
corresponding parameters are chosen as

𝐺 = ( 0 1
−4 0) (66)

and

𝐹 = (1, 0) ,
𝑄 = (0, 1) ,
𝑐0 = 1.3.

(67)

The initial states are selected as

𝑢 (𝑥, 0) = 0.01 cos (2𝜋𝑥) ,
𝜑 (𝑥, 0) = sin (2𝜋𝑥) ,

V = (0, 2) ,
V̂ = (0, −3) .

(68)

The time step and space step are taken as 0.001s and 0.05s.
The solution of the closed-loop system (59) is plotted in

Figure 1. The output tracking and the disturbance estimation
are plotted in Figure 2. In Figures 1 and 2, we choose 𝑐1 = 0.1,𝑐2 = 0.7, 𝑐3 = 0.8.

Figure 1 displays the numerical results for closed-loop
system in the noncollocated error feedback output regulation
case. Figures 1(a) and 1(b) display the states of the controlled
system𝑢(𝑥, 𝑡), 𝑧(𝑥, 𝑡).The states of the observer𝜌(𝑥, 𝑡),𝜑(𝑥, 𝑡)
are plotted in Figures 1(c) and 1(d). It is obvious that all states
are bounded.
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Figure 1: The solution of closed-loop system.
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Figure 2(a) shows that the output signal 𝑢(1, 𝑡) tracks
the given reference signal 𝑌𝑟𝑒𝑓(𝑡) as time evolves for non-
collocated case. Obviously, output signal 𝑢(1, 𝑡) can track
the given reference signal asymptotically. The disturbance
estimation is plotted in Figure 2(b).Theobserver reconstructs
the corresponding disturbance. Both of them show that the
convergence is very effective and smooth. More importantly,
no peaking phenomenon takes place. Comparing Figure 2(a)
with Figure 2(b), it can be seen that after the convergence
of the observer, the output converges to zero verifying
disturbance rejection.

7. Concluding Remarks

In this paper, we mainly solved the performance output
regulation problem for a wave-heat cascade system with
unmatched disturbance. Applying a novel auxiliary trajectory
method and servomechanism design, the performance out-
put can track the given signal asymptotically.Thus, the contri-
bution of this paper is to solve the noncollocated performance
output regulation problem of the cascade system despite
unmatched disturbance.The idea is potentially promising for
treating other PDE-PDE or PDE-ODE systems to solve the
performance output regulationwhichwill be our futurework.
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